Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Restor Dent Endod ; 48(2): e20, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37284341

RESUMO

This mini-review was conducted to present an overview of the use of exosomes in regenerating the dentin-pulp complex (DPC). The PubMed and Scopus databases were searched for relevant articles published between January 1, 2013 and January 1, 2023. The findings of basic in vitro studies indicated that exosomes enhance the proliferation and migration of mesenchymal cells, as human dental pulp stem cells, via mitogen-activated protein kinases and Wingless-Int signaling pathways. In addition, they possess proangiogenic potential and contribute to neovascularization and capillary tube formation by promoting endothelial cell proliferation and migration of human umbilical vein endothelial cells. Likewise, they regulate the migration and differentiation of Schwann cells, facilitate the conversion of M1 pro-inflammatory macrophages to M2 anti-inflammatory phenotypes, and mediate immune suppression as they promote regulatory T cell conversion. Basic in vivo studies have indicated that exosomes triggered the regeneration of dentin-pulp-like tissue, and exosomes isolated under odontogenic circumstances are particularly strong inducers of tissue regeneration and stem cell differentiation. Exosomes are a promising regenerative tool for DPC in cases of small pulp exposure or for whole-pulp tissue regeneration.

2.
Int J Stem Cells ; 10(1): 38-47, 2017 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-28215057

RESUMO

BACKGROUND AND OBJECTIVES: The imperative role of dental pulp stem cells (DPSCs) in regenerative therapy demands an in-vitro expansion which must deal with the safety and ethical problems associated with fetal bovine serum (FBS). The primary aim of this study was to compare the effects of human platelet rich fibrin (hPRF) exudate Vs FBS on proliferation and osteodifferentiation of human dental pulp stem cells (hDPSCs). The secondary one was to determine the optimum concentration of hPRF exudate inducing hDPSCs proliferation and osteodifferentiation. METHODS: The direct method was used to prepare hPRF exudate. hDPSCs were isolated from impacted mandibular third molars of twelve donors by the outgrowth method. For cell viability and proliferation rate testing, 96 well plates were used and the assay was done in duplicate and the trial repeated four times under the same conditions. Six wells were used to contain 10% FBS, serum free media, 1%, 5%, 10% and 20% concentrations of hPRF exudates, respectively. The proliferation assay was carried out by MTS tetrazolium cell proliferation assay kit and Elisa reader. The study design for osteodifferentiation protocol was exactly as the proliferation one and instead the assay was carried out by alizarin red with Elisa reader. RESULTS: Compared to 10% FBS, 10% hPRF exudate was the optimum concentration for hDPSCs proliferation, while 1% hPRF exudate was the optimum concentration for osteodifferentiation of hDPSCs. Conclusions: Avoiding the risk of zoonosis which may be occurred with FBS, it is recommended to use 10% hPRF exudate for proliferation and 1% for osteodifferentiation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...